
N

b
a

x	=	b	-	a

d	=	x	/	N

z	=	a	+	i	*	d

y	=
2*cosh(z)

2

i

Y

Profiling HPC Application Resilience using DisCVar
Stephen Penton

Mentors: Dr. Nathan DeBardeleben and Terry Grové

Application resilience is an important part
of future HPC systems. Doing so through
exhaustive fault injection campaigns
comes at a cost. Exhaustive campaigns
are not practical for certain HPC
applications. Thus, using tools such as
DisCVar would allow us to:
• Identify application variables

susceptible to faults
• Design targeted fault injection

campaigns

• Annotate source code
• Recompile application
• Run to generate DisCVar output

DisCVar does introduce its own
overhead, albeit for only a single run
of the application. We see a runtime
increase of approximately 2 orders of
magnitude in our integration
application; VPIC experienced an
increase greater than 3 orders of
magnitude. A continuation of this work would

include:
• Exhaustive FSEFI fault injection

campaign on integral test
application

• Further testing of DisCVar on VPIC
• Design and execution of FSEFI

campaign on VPIC using DisCVar
results.

Motivation

Analysis

Background Methodology

Future Work

DisCVar is a tool developed at LLNL that
uses Algorithmic Differentiation (AD) to
identify critical variables within an
application’s source code. AD is a
method of finding the derivative of a
program by applying the chain rule. A
partial derivative of the output is found
with respect to input and intermediate
variables. These are then used to rank
variables according to how critical they
are.

𝑌 = 2 ∗ cosh 𝑎 + 𝑖 ∗
𝑏 − 𝑎
𝑁

These results can then be used to
design fault injection campaigns. In this
work, we applied DisCVar to a numerical
integration application and VPIC, an
HPC particle-in-cell simulation.

1 #include <stdio.h>

2 #include <math.h>

3
4
5
6 /**

7 * Stephen Penton | sepenton@lanl.gov

8 *

9 * 02/13/2019

10 *
11 * App to compute the area under the curve of
12 * the fucntion cosh(x). It will be approximated
13 * by applying the Trapezoidal rule along the
14 * interval [a,b]. This is effectively the
15 * average of the Left and Right Reimann Sums
16 * along the same interval
17 **/
18
19 #define ABS(x) (((x) < 0.0) ? (-(x)) : (x))
20 #define ANS 13.64473533525692
21 #define EPS 1e-2
22 #define N 75
23
24 double
25 func(double x) { //f(x) = cosh(x), using exponential form
26
27 double t1, t2;

28
29 t1 = exp(x) + exp(-x);

30 t2 = t1/2;

31
32 return t2;

33 }
34
35 int
36 main(int argc, char* argv[]) {
37
38 //

39 double a, b; // bounds of integeration

40 double area;

41
42 a = -2;

43 b = 3;

44
45 area = 0;

46
47 double dx = (b - a)/N; // width of each subinterval

48
49 int i;

50 for (i = 1; i <= N-1; i++) {

51
52 double x_i = a + i*dx;

53 area += 2*func(x_i);

54 }

55
56 area += func(a) + func(b); // add f(a) and f(b)

The figure on the left describes the
DisCVar estimated SDC rates by line
number for our integration test
application. The non-zero values
range from 0.02 to 0.38. Of these 9
SDC rates, 7 are greater than 0.20.
DisCVar’s output facilitates the
identification of the most critical
variables within an application.

Variable criticality is determined by an
estimated silent data corruption (SDC)
rate calculated via the derivatives from
the AD process and a given threshold.
Running DisCVar on our integration
application allows for the source code
to be highlighted based on SDC rates
for each line. Lines of note include 42,
43, and 47.

Annotate
Source Code

Recompile and
Run Application

Analyze
DisCVar Output

Design Fault
Injection

Campaign

Fault Injection
Experiments

LA-UR-19-27073

